Thursday, March 21, 2013

Relationship Between The Optical Coupler And PLC Splitter


In fact, splitter is named for the function of the device, coulper named for its working principle, splitter may be based coupler, and may be based on the waveguide or the separating element, coupler can be done either the splitter, but also can be done WDM, attenuator.

Optical coupler either split optical signals into multiple paths or combines multiple signals on one path. Optical signals are more complex than electrical signals, making optical couplers trickier to design than their electrical counterparts. Like electrical currents, a flow of signal carriers, in this case photons, comprise the optical signal. However, an optical signal does not flow through the receiver to the ground. Rather, at the receiver, a detector absorbs the signal flow. Multiple receivers, connected in a series, would receive no signal past the first receiver which would absorb the entire signal. Thus, multiple parallel optical output ports must divide the signal between the ports, reducing its magnitude. The number of input and output ports, expressed as an N x M configuration, characterizes a coupler. The letter N represents the number of input fibers, and M represents the number of output fibers. Fused couplers can be made in any configuration, but they commonly use multiples of two (2 x 2, 4 x 4, 8 x 8, etc.).

PLC Splitter is a device that split the fiber optic light into several parts by a certain ratio. The simplest couplers are PLC Splitters. These devices possess at least three ports but may have more than 32 for more complex devices.PLC Splitters are important passive components used in FTTX networks. But two kinds of fiber splitters are popular used, one is the traditional fused type PLC Splitter (FBT splitter), which features competitive prices; the other is PLC PLC Splitter, which is compact size and suit for density applications. Both of them have its advantages to suit for different requirement.

PLC Splitter typical parameter include input and output part cable length, splitting ratio, working wavelength and with what kind of fiber optic connectors. Just like fiber patch cable, fiber splitters are usually with 0.9mm, 2mm or 3mm cables. 0.9mm outer diameter cable is mostly used in stainless steel tube package PLC Splitters, while 2mm and 3mm cables are mostly used in box type package fiber splitters. Based on working wavelength difference there are single window and dual window PLC Splitters. And there are single mode fiber splitter and multimode fiber splitter. Typical connectors installed on the PLC Splitters are FC or SC type.

Optical coupler or PLC splitters are available in a selection of styles and sizes to separate or combine light with minimal loss. All couplers are produced employing a proprietary procedure that produces reliable, low-cost devices. They’re rugged and impervious to common high operating temperatures. Couplers can be fabricated with custom fiber lengths or with terminations of any type.

Monday, March 18, 2013

Application of optical communication is still broad prospects


Once the Nortel global leader in fiber optic communications during the Internet bubble in 2000, the money in the acquisition of a large number of optical communications research and the production of small and medium enterprises, the industry has been criticized in the subsequent bankruptcy of Nortel. In fact, Nortel grasp of technology trends, the direction is right, unfortunately, Nortel too hasty, global demand for optical communication was not to such an extent.

But now the situation is very different compared with around 2000. The rapid development of mobile Internet and the widespread popularity of smart mobile terminal equipment, being a huge challenge to the global telecommunications network capacity, transmission speed. The era of “data flood peak to optical communication technology has always been known by the transmission bit of new development opportunities and a huge space. Optical communication technology not only did not fall behind, the contrary, the optical communication industry chain, from fiber optic cable system equipment, terminal equipment to optical devices, a critical period in the comprehensive technology upgrade.

The field of optical communication is a noteworthy event, the National Development and Reform Commission recently organizing the preparation of strategic emerging industries key products and services Guidance Catalogue, which in conjunction with the relevant departments, the optical communication technology and product responsibility and selected emerging industries of strategic focus products.

In fiber optics, including FTTx G.657 optical fiber, broadband long-distance high speed large capacity optical fiber transmission with G.656 optical fiber, photonic crystal fiber, rare earth doped fiber (including ytterbium doped fiber, erbium doped fiber and thulium doped fiber, etc.) the laser energy transmission fiber, and has some special properties of new optical fiber, plastic optical fiber, polymer optical fiber is fully finalists. The upgrade of the fiber optic technology, will bring the data transmission capacity, distance, quality leap.

In the field of fiber access equipment, passive optical network (PON), wavelength division multiplexer (WDM),OLT and ONU on the list. Optical transmission equipment, especially the line rate of 40 Gbit/s, 100Gbit/s large capacity (1.6Tb/s and abobe) DWDM equipment, reconfigurable optical bifurcation Multiplexer (ROADM) wavelength division multiplexing system ran cross-connect (OXC) equipment, large-capacity high-speed OTN optical transport network equipment as well as packetized enhanced OTN equipment, PTN packet transport network equipment also impressively. These products are “broadband China” works to promote a powerful weapon; both long-distance backbone network, metropolitan area network or access network even close to the user’s “last mile” of these products will come in handy.

The major products are classified as strategic emerging industries in the field of optical devices, high-speed optical components (active and passive). This is the core and foundation of the field of optical communication technology, device development, the improvement of integration, function enhancement can bring significantly reduce the cost of system equipment and provide a performance boost.

At the same time, the annual OFC / NFOEC (fiber-optic communications exhibition) will be held in late March in California. This event will showcase the latest technology and research progress of the global optical component modules, systems, networks and fiber optic products, represents a new trend of development of optical communication technology.

100G for ultra-high-speed network technology is the current OFC hot one. 2012 100G technology on a global scale backbone network level scale application of 100G optical network applications will rapidly expand with the 100G device further mature. In the same time, the industry has also increased efforts to develop the 100G optical modules, silicon photonics technology pluggable multi-source agreement 100G CFP MSA CPAK optical module has been available. Outside the backbone network, 100G MAN application is the current one of OFC discussion topic.

The rise of cloud computing brings data center construction boom, 100G technology in the data center is a popular data center for high-speed pluggable optical devices is also a hot topic. Experts believe that photonic technology has a key role to play in the large enterprise data centers, but this is only a start, the size of the new cloud computing data center such as a warehouse, with more than 100,000 servers carrying the computing and storage resources, the required network bandwidth than PB level. These data centers only optical communications technology in order to achieve VCSEL (vertical cavity surface emitting lasers) and multi-mode fiber has played an important role, and will continue to introduce new fiber optic communication technology.

Friday, March 15, 2013

Several common Kinds Of CWDM Moudules


Coarse Wavelength Divison Multiplexer/Demultiplexer Module (CWDM Mux/Demux) is really a flexible, low-cost solution that effective at combining nine optical signals in to a fiber pair. The CWDM Mux/Demux is designed to interoperate with the WaveReady distinct transponder and optical regenerator solutions as well as CWDM transponders and small form-factor pluggables (SFPs) utilized in acquireable transmission equipment.

Common utilizations of CWDM technology include the multiplexers and de-multiplexers or optical amplifiers to improve the ability in the fiber optic cable. The CWDM Mux/Demux modules including CWDM MUX and CWDM Demux, are designed to multiplex multiple CWDM channels into 1 or 2 fibers. As well as highly reliable passive optics certified for environmentally hardened applications, the CWDM Mux/Demux lets operators use available fiber bandwidth in local loop and enterprise architectures.

In accordance with the wavelength or running channels in the each signal, CWDM MUX/DEMUX includes 4CH, 5CH, 8CH, 9CH, 16CH, 18CH CWDM Mux/Demux. These CWDM MUX/DEMUX can be found in 19 Rack Mount or LGX module package.

CWDM MUX/DEMUX Module general features:
w   Low Insertion Loss;
w   Low PDL;
w   Compact Design;
w   Good channel-to-channel uniformity;
w   Wide Operating Wavelength;
w   Wide Operating Temperature;
w   From -40??C to 85??C;
w   High Reliability and Stability.

CWDM MUX/DeMUX Module Applications:
w   CWDM System;
w   PON Networks;
w   CATV Links.

CWDM supplies the most economic and efficient wavelength division multiplexing solutions for metro edge and access networks.DK Photonics CWDM products cover 2 channel, 4 channel, 5 channel, 8 channel, 9 channel, 16 channel and 18 channel CWDM Mux/Demux.DK Photonics Technology offers CWDM OADMs (Optical Add/Drop Module) from 1 to 16 channels for CWDM networks, including 1 channel, 2 channel, 4 channel, 8 channel and 16 channel CWDM OADM.

The CWDM OADMs are passive devices that can multiplex/demultiplex or add/drop wavelengths from multiple fibers onto one optical fiber. Through the use of CWDM technology, individual channels might be optically added or dropped from a fiber pair while allowing pass-through visitors to continue unobstructed through the bus or ring. It offers low insertion loss, high channel isolation, wide pass band, low temperature sensitivity and epoxy free optical path.

CWDM OADM Key Features:
w   Add/drop ITU-T G.695- and G.694.2-compatible CWDM channels onto a fiber pair;
w   Designed for use in outside-plant fiber splice enclosures;
w   Upgradeable to 8 channels per fiber;
w   Provides low-loss pass-through for CWDM channels;
w   Thermally stable passive optics require no electrical energy.

CWDM OADM Applications:
w   Provides fiber conservation or reclamation for CWDM wireless backhaul, broadband, and other services;
w   Supports linear (bus) and ring add/drop architectures

Something you should know about CWDM DWDM and OADM


CWDM/DWDM Mux/Demux and OADM are all fit in with Passive. CWDM and DWDM technology produce an efficient strategy to share one set of fiber strands and hang together various communications interfaces, simply by using different wavelengths of light for each channel. Thus they could expand the proportions from the network without laying more fiber. And that i want to introduce the actual basical description of CWDM Mux/Demux, DWDM Mux/Demux and OADM.

As you know, Mux (Multiplexer) products combine several data signals into one for transporting over the single fiber. Demux (Demulitplexer) separates the signals at the opposite end. Each signal are at an alternative wavelength.

CWDM Mux/Demux
The Coarse Wavelength Division Multiplexing-CWDM Mux/Demux is often a flexible plug-and-play network solution, which helps insurers and enterprise companies to affordably implement denote point or ring based WDM optical networks. CWDM Mux/demux is perfectly suitable for transport PDH, SDH / SONET, ETHERNET services over WWDM, CWDM and DWDM in optical metro edge and access networks. CWDM tools are widely used in less precision optics and lower cost, un-cooled lasers with lower maintenance requirements. Weighed against DWDM and Conventional WDM, CWDM is a bit more affordable and much less power usage of laser devices. CWDM Multiplexer Modules can be found in 4, 8 and 16 channel configurations. These modules passively multiplex the optical signal outputs from 4 excessively electronic products, send on them somebody optical fiber and de-multiplex the signals into separate, distinct signals for input into gadgets along the opposite end for your fiber optic link.

DWDM Mux/Demux
The Dense Wavelength Division Multiplexing-DWDM Mux/Demux Modules are built to multiplex multiple DWDM channels into 1 or 2 fibers. Depending on type CWDM Mux/Demux unit, with optional expansion, can transmit and receive around 4, 8, 16 or 32 connections of standards, data rates or protocols more than one single fiber optic link without disturbing the other person. DWDM MUX/DEMUX modules provides best and low-cost bandwidth upgrade on your current fiber optic communication networks.

OADM
OADM(Optical Add-Drop Multiplexer) is often a device utilized in WDM systems for multiplexing and routing different channels of fiber into or out of a single mode fiber (SMF). OADM is made to optically add/drop one or multiple CWDM/DWDM channels into one or two fibers, provides capacity to add or drop an individual wavelength or multi-wavelengths from the fully multiplexed optical signal. This enables intermediate locations between remote sites gain access to the regular, point-to-point fiber segment linking them. Wavelengths not dropped pass-through the OADM and continue on in direction of the remote site. Additional selected wavelengths can be added or came by successive OADMS if required.

Tuesday, March 12, 2013

What is WDM? What Is the Difference Between DWDM and CWDM Optical Technologies?


What is WDM?

In the same optical fiber at the same time can let two or more than two wavelength signal transmit and receive information through different optical channel, called wavelength division multiplex, referred to as WDM. Wavelength division multiplexing includes frequency division multiplexing and wavelength division multiplexing. Optical frequency division multiplexing (FDM) technology and optical wavelength division multiplexing (WDM) technology has no obvious difference, because the light is part of the electromagnetic wave, frequency and wavelength of light have a single correspondence. Usually also can understand so, optical frequency division multiplexing mean subdivision of optical frequency, very dense optical channel. Wavelength division multiplexing means divided frequency of light, light channel far apart, even in the optical fiber with different window.
The general application of division multiplexing wavelength is respectively using a wavelength division multiplexer and demultiplexer arranged at both ends of the optical fiber, coupling and separation of different wavelength. The main four types of WDM are fused biconical taper type, dielectric film type, FBG type and planar waveguide grating type .The main characteristic is the insertion loss and isolation. Usually, the optical link using wavelength division multiplexing equipment, increase the amount of optical link loss is called WDM insertion loss. When the wavelength transmission through the same optical fiber, the D-value between the splitter input mixed power and the output end of the fiber power is called isolation.. The following are characteristics and advantages of optical wavelength division multiplexing technical:
(1) Make full use of low loss band fiber, increase the transmission capacity of optical fiber, the physical limit of an optical fiber for transmitting information doubled to several times. At present, we only use the low loss optical fiber spectrum (1310nm-1550nm) a few, WDM can fully utilize the huge bandwidth of single-mode fiber is about 25THz, the transmission bandwidth is sufficient.
(2) There are ability to transmit  two or more than two asynchronous signal in the same optical fiber ,there are compatible for digital and analog signals, has nothing to do with the data rate and modulation mode, the middle line can be removed or added channel.
(3) About the optical fiber system that has built, especially early laying optical cable that core number not much, as long as the original system power is margin, we can increase the capacity; realize the transmission of multiple one-way or two-way signals without making big changes to the original system, so it has strong flexibility.
(4) Due to the large number of reducing use amount of the fiber, it can greatly reduce the construction cost, because the fiber quantity is less, when a fault occurs, the recovery is also fast and convenient.
(5) Sharing of active optical devices, the cost of transmission of multiple signals or increase new business will reduce.
(6)The active devices in the system have been substantially reduced, which improves the reliability of the system. At present, because of the light multi carrier division multiplexing of optical transmitter, optical receiver equipment's requirements higher, technology implementation has certain difficulty, also multiple core cable used in traditional broadcast television transmission business does not appear especially shortage, so the practical application of WDM is still not much. However, with the development of CATV integrated service development, the growing demand for network bandwidth, all kinds of selective service upgrade and network implementation economic cost considerations and so on, the characteristics and advantages of WDM in the CATV transmission system gradually emerged, showing broad application prospects, even influence the development pattern of CATV network.

What Is the Difference Between DWDM and CWDM Optical Technologies?
DWDM (dense wavelength division multiplexing) is undoubtedly the first choice technology in the field of fiber optic applications today, But the cause of high cost make many do not bounteous operators hesitating. Is there a lower cost for using the wavelength division multiplexing technology? In the face of this demand, CWDM (coarse wavelength division multiplexing) emerges as the times require.
CWDM, just as its name implies, is a dense wavelength division multiplexing next of kin, the difference between CWDM and DWDM mainly has two points: first, the CWDM carrier channel spacing is wider, therefore, light in a single fiber can reuse about 5 to 6 wavelengths, that is where the "dense" and "coarse" appellation come from; Two, CWDM modulation laser using uncooled laser, but DWDM is used in cooling laser. Cooling laser using temperature tuning, uncooled laser adopts electronic tuning. Because the range of temperature distribution is nonuniform in a very wide wavelength, so the temperature tuning is very difficult to realize, the cost is very high. CWDM avoids this problem, so it greatly reduces the cost; the whole CWDM system cost only 30% of DWDM.
CWDM provides a very high access bandwidth with a low cost, suitable for point to point, Ethernet, SONET rings and all kinds of popular network structure, especially suitable for short distance, high bandwidth, access point intensive, communication applications, such as network communication between the building or building. It is particularly worth mentioning is that CWDM with the use of PON (passive optical network).PON is a cheap, one-point to multi-point optical fiber communication mode, in combination with the CWDM, each individual wavelength channel can be used as virtual optical link of PON, Implementation of broadband data transmission between center node and multiple distributed nodes.
There are several companies are offering CWDM related products at present. However, CWDM is a product of cost and performance tradeoffs; inevitably there are some performance limitations. Industry experts point out, at present the CWDM have four following disadvantages: first, CWDM in a single fiber support multiplexing wavelength number is minor, leading to future expansion cost is high; second, multiplexing, multiplexing equipment cost should also be reduced, the device cannot be simply modified of DWDM corresponding equipment; third, CWDM does not apply to metropolitan area network, the distance between metropolitan area network nodes is short , the money that operators use in CWDM equipment expansion can be used to laying more fiber, and get better effect; fourth, CWDM has not yet formed standards.

What’s more, something about the WDM products.
(1)CWDM Mux/Demux module
 CWDM Mux and CWDM Demux are designed to multiplex multiple CWDM channels into one or two fibers. The core of CWDM Module application is the passive MUX DEMUX unit. The common configuration is 1×4, 1×8, 1×16 channels. Available in 19″ Rack Mount or LGX module package. Optional wide band port is available to multiplex with CWDM Channels wavelength.
(2)DWDM Mux/Demux Modules
DWDM Mux and DWDM DeMux are designed to multiplex multiple DWDM channels into one or two fibers. The common configuration is 4, 8, 16 and 40 channels. These modules passively multiplex the optical signal outputs from 4 or more electronic devices, send them over a single optical fiber and then de-multiplex the signals into separate, distinct signals for input into electronic devices at the other end of the fiber optic link.
(3)Optical Splitter-- a important component in EPON network
Optical splitter in optical communication era is a component of EPON network construction, is a connection of OLT and ONU passive device.
Its function is to distribute the downlink data, and focus on the uplink data. Optical splitter has an upstream optical interface, a plurality of downlink optical interface. Optical signals from the upstream optical interface over was assigned to the downstream optical interface out all transmissions, optical signals from the downlink optical interface over being allocated to uplink optical interface out transmission only. The light intensity signal downlink optical interface of each can be same, can also be different.

Thursday, March 7, 2013

About Us


About us

DK Photonics is one of the leading companies in designing and manufacturing of high quality optical passive components mainly for telecommunication, fiber sensor and fiber laser applications. Headquartered and factory are located in Shenzhen of China. Cost effective, best quality and best service are always our goal.

DK Photonics produces a large array of fiber-optic components such as PLC Splitter, WDM, FWDM, CWDM, DWDM, OADM, Circulator, Isolator, PM Circulator, PM Isolator, Fused Coupler, Fused WDM, Collimator, Optical Switch and Polarization Maintaining Components, Pump Combiner, High power Components, Patch Cord and all kinds of connectors.High power components and polarization maintaining components are our major focuses.